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Abstract. The aim of this addendum is to explain actions of multiplier operators
on H1 spaces associated with Schrödinger operators with potentials satisfying a
reverse Hölder inequality. In particular we show that boundedness of the operators
F (A) on atoms proved in [3] imply existence of their continuous extensions on H1

A.

1. Introduction

Let Tt(x, y) be the integral kernels a semigroup of linear operators {Tt}t>0 on Rd,
d ≥ 3, generated by a Schrödinger operator −A = ∆ − V (x), where V (x) is a non-
zero non-negative function satisfying the reverse Hölder inequality with an exponent
q > d/2, that is,( 1

|B(x, r)|

∫
B(x,r)

V (y)q dy
)1/q

≤ C

|B(x, r)|

∫
B(x,r)

V (y) dy

holds for every x ∈ Rd and r > 0. We say that an L1(Rd)-function f belongs to
the Hardy space H1

A if the maximal operator MAf(x) = supt>0 |Ttf(x)| belongs to
L1(Rd). Then we set

(1.1) ‖f‖H1
A

= ‖MAf‖L1(Rd).

It was proved in [2] that the space H1
A admits a special atomic decomposition, that

is, every element f ∈ H1
A can be written as

(1.2) f =
∞∑
j=1

cjaj ,
∑
j

|cj | ≤ C‖f‖H1
A
,

where cj ∈ C and aj are special (1,∞)-atoms for the space H1
A. The following

properties of the atoms will used in this addendum:

every atom a is supported by a ball B and ‖a‖L∞ ≤ |B|−1.

Therefore ‖a‖L1 ≤ 1, ‖a‖L2 ≤ |B|−1/2 and the convergence in (1.2) is in L1(Rd). It is
also shown in [2] that there is a constant C > 0 such that for every atom a one has

‖MAa‖L1 ≤ C.
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2. Action of multiplier operators on H1
A

Let
∫∞

0 λ dEA(λ) be the spectral resolution for A. For a Borel and bounded function
F on (0,∞) we denote F (A) =

∫∞
0 F (λ) dEA(λ). It was actually proved in [3] that if

a bounded continuous function F defined on (0,∞) satisfies

(2.1) sup
t>0
‖ψ( · )F (t · )‖C(α) = C0 <∞

for certain α > d/2 and a fixed nonzero auxiliary function ψ ∈ C∞c (0,∞), then

(2.2) ‖F (A)a‖H1
A
≤ CC0 for every atom a.

The aim of this addendum is to explain that the operator F (A) has then the unique
extension to continuous operator on H1

A.
To do this let f ∈ H1

A ∩ L2(Rd) and let f =
∑

j cjaj be its atomic decomposition
(see (1.2)). Clearly F (A)f ∈ L2(Rd). Let g be a function of the form g = Tsϕ with
s > 0, and ϕ ∈ S(Rd). Since Ts(x, y) = Ts(y, x) satisfy the Gaussian bounds

(2.3) 0 ≤ Ts(x, y) ≤ Cs−d/2 exp(−c|x− y|2/s),

we get that g ∈ L1(Rd) ∩ L∞(Rd) ⊂ L2(Rd). Therefore,

∫
(F (A)f)(x)g(x) dx =

∫
f(x)(F̄ (A)Tsϕ)(x) dx =

∫
f(x)(TsF̄ (A)ϕ)(x) dx.(2.4)

Obviously, F (A)ϕ ∈ L2(Rd). Hence, by (2.3), we have that (TsF̄ (A)ϕ)(x) ∈ L∞(Rd).
Thus,

∫
(F (A)f)(x)g(x) dx =

∫ ∑
j

cjaj(x)(TsF̄ (A)ϕ)(x) dx

=
∑
j

cj

∫
aj(x)(TsF̄ (A)ϕ)(x) dx

=
∑
j

cj

∫
aj(x)(F̄ (A)Tsϕ)(x) dx

=
∑
j

cj

∫
(F (A)aj)(x)(Tsϕ)(x) dx

=
∑
j

cj

∫
(F (A)aj)(x)g(x) dx.

(2.5)
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Assume now that ϕ ∈ S. Recall that Tt is a strongly continuous semigroup of con-
tractions on Lp for 1 ≤ p <∞. Since F (A)f ∈ L2, using (2.5), we obtain that∫

(F (A)f)(x)ϕ(x) dx = lim
s→0

∫
TsF (A)f(x)ϕ(x) dx

= lim
s→0

∫
F (A)f(x)Tsϕ(x) dx

= lim
s→0

∑
j

cj

∫
F (A)aj(x)Tsϕ(x) dx

= lim
s→0

∑
j

cj

∫
(TsF (A)aj)(x)ϕ(x) dx.

(2.6)

Observe that (2.2) implies that ‖TsF (A)aj‖L1 ≤ ‖TsF (A)aj‖H1
A
≤ CC0 uniformly

on s > 0 and j, because the functions λ 7→ e−sλF (λ) satisfies (2.1) with a constant
C0 independent of s > 0. Therefore, we are allowed to change the order of the limit
and the summation in (2.6) and obtain

∫
(F (A)f)(x)ϕ(x) dx =

∑
j

cj

∫
F (A)aj(x)ϕ(x) dx =

∫ (∑
j

cjF (A)aj(x)
)
ϕ(x) dx.

(2.7)

So we get that for f ∈ H1
L ∩ L2(Rd) one has:

(2.8) F (A)f =
∑
j

cjF (A)aj ,

where f =
∑

j cjaj is an atomic decomposition of f . Moreover,

‖F (A)f‖H1
A
≤ CC0‖f‖H1

A
.

The converges in (2.8) is in L1(Rd) and also in H1
A. If now fn ∈ L2(Rd) is a Cauchy

sequence in H1
A, then F (A)fn belong to L2(Rd) and form a Cauchy sequence in H1

A

and of course in L1(Rd).
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